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VIBRATION ANALYSIS OF CYLINDRICALLY CURVED PANELS 

WITH SIMPLY SUPPORTED OR CLAMPED EDGES AND 

COMPARISON WITH SOME EXPERIMENTS 

By John L. Sewall 
Langley Research Center 

SUMMARY 

The natural frequencies of cylindrically curved panels are calculated by application 
of the classical energy method employing the Rayleigh-Ritz procedure and are compared 
with measured frequencies of rectangular and square panels fastened at their edges by 
means of closely spaced bolts. The mode shapes used in the calculations a r e  products 
of functions based on beam vibration mode shapes and satisfying geometrical edge condi- 
tions in both longitudinal and circumferential directions. 

General frequency equations are derived, and their applications to  panels of small  
curvature lead to simplified Rayleigh-type frequency equations which w e r e  more satis- 
factory for certain modal combinations and edge conditions than for others. Measured 
frequencies were, for  the most part, bracketed by calculated frequencies based on simply 
supported o r  fully clamped edges and, at low-order circumferential modes, were gener- 
ally closer to calculated frequencies for simply supported edges but showed some tend- 
ency to move closer to calculated frequencies for clamped edges as the circumferential 
mode number increased. This behavior is attributed partly to membrane effects due to 
panel curvature and partly to complicated edge conditions due to the use of simple lap 
attachments which could not be represented adequately by theory. 
mental frequencies with inextensional frequencies, calculated with longitudinal and/or 
circumferential membrane strains omitted, indicated that actual panel mountings may 
have provided greater edge fixity along curved rather than along straight edges. 

Comparison of experi- 

Further efforts to  bring experimental and theoretical frequencies into closer agree- 
ment should include vibration tes ts  on curved panels with edges designed to simulate 
simply supported or  clamped conditions as closely as possible. In addition, the effects 
of modal functions other than beam functions should be examined, and other methods of 
analysis, such as those involving finite difference o r  finite element techniques, should be 
applied. 



INTRODUCTION 

Knowledge of the vibration characteristics of curved panels is important to  
designers confronted with aeroelastic and acoustic problems in aerospace vehicle struc- 
tures  in which curved panels are important structural  components. Curved panels, like 
flat panels, possess many vibration modes which can respond to such dynamic forces as 
those due to acoustic excitation and unsteady aerodynamic flow. Panel frequencies and 
mode shapes can be greatly affected by both curvature and edge support conditions. 
paper is concerned with both of these effects in comparisons of analytical and experi- 
mental frequencies of some thin curved panels. 

This 

Previous studies applicable to the vibrations of cylindrically curved panels are 
reported in references 1 to 6 for various combinations of edge conditions. In refer- 
ence 1, Reissner derives frequency equations for thin paraboloidal shallow shell elements 
with simply supported rectangular boundaries. Palmer (ref. 2) gives frequency equations 
for both simply supported and clamped-edge rectangular and square panels curved in both 
directions, but these equations are restricted to  the mode with one half-wave in each 
direction. 
equations of motion of cylindrical shells (ref. 3), is applicable to cylindrically curved 
panels with simply supported straight edges and simply supported, clamped, or  free 
curved edges, and various combinations of these. In an extensive analytical treatment 
of the dynamic behavior of thin shallow shells of double curvature, Oniashvili in refer- 
ence 4, following an approach advocated by Vlasov in reference 5,  considers the more 
general case of arbitrary support conditions, with the mode shapes in each direction 
approximated by beam vibration functions. Some results are included in reference 4 
showing the effects of curvature and edge clamping on the natural frequencies of spheri- 
cally curved panels, but most of the other examples, together with some experimental 
results on particular shell-roof configurations, are concerned with shell elements having 
simply supported edges. 
is to be found in these references. However, in a very recent paper (ref. 6) an extensive 
series of vibration experiments on cylindrically curved panels is reported as part of a 
larger investigation concerned with sonic fatigue, and comparisons a r e  made with the 
results of a vibration analysis based on a modal approach employing beam modes, as in 
reference 4. 

Forsberg's work, involving the direct  numerical solution of the differential 

Very little, if  any, correlation between theory and experiment 

The present paper is exclusively concerned with the vibration of panels of small 
curvature, and its purpose is to  report  a study of the effects of curvature and edge con- 
ditions on the natural frequencies of some cylindrically curved panels for which exper- 
imental frequency and mode shape data are known. The experimental data of reference 6 
are used, together with the data of references 7 and 8, for panels of various radii of cur- 
vature, including the limiting case of infinite radius (that is, flat panel). The panels of 
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references 6 and 7 are rectangular and have very nearly the same dimensions but dif- 
ferent thicknesses. The panels of reference 8 are square, and the frequencies apply 
to  just one panel thickness (namely, 0.020 in. (0.051 cm)). Experimental frequencies 
obtained in the same series of tests as reference 8 for other thicknesses (0.032 in. 
(0.081 cm) and 0.040 in. (0.10 cm)), but not heretofore published, are included in the 
present paper and compared with calculated frequencies. 

Calculated frequencies in the present paper were obtained by a straightforward 
application of the classical energy method employing the Rayleigh-Ritz procedure from 
which general frequency equations for arbitrary edge conditions are derived in  the same 
manner as in references 9 and 10 for  the vibrations of flat panels. Shell membrane and 
bending effects a re  both included. Applications are based on the use of elementary beam 
vibration functions to approximate the mode shapes of the panel, as is done in  refer- 
ences 4 to  6. Simplifications involving modal decoupling of the general Rayleigh-Ritz 
equations due to the use of beam functions are shown to lead to  a general approximate 
expression that is applicable to several  different combinations of edge conditions. 

The main body of the paper begins with the development of the general frequency 
equations followed by applications involving the use of beam functions and leading to a 
general approximate frequency equation and also to  particular frequency equations for  
clamped-edge and simply supported curved panels. Although the main emphasis is on 
curvature and edge conditions, the effects of panel thickness are also discussed. 

SYMBOLS 

a radius of curvature to middle surface of panel (see fig. 1) 

amplitude functions in assumed modal expansions (see eqs. (5) and (6)) 

matrix elements in Rayleigh-Ritz frequency equations 
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C 

D 

E 

h 

I1 to Ifj 

2 

m 

n 

matrix elements in  Rayleigh-Ritz frequency equations 

Eh extensional (or membrane) stiffness, - 

bending stiffness, 

Young's modulus 

1 - lJ.2 
Eh3 

12(1 - p 2 )  

panel thickness 

surface integrals involving modal functions 

length of panel along straight edges (see fig. 1) 

integer denoting longitudinal modal component (number of axial half-waves 
for a panel with simply supported curved edges) 

integer denoting circumferential modal component (number of circum- 
ferential half-waves for a panel with simply supported straight edges) 

eigenvalue of beam-mode approximation 

circumferential coordinate (see fig. 1) 

time 

kinetic energy 

strain energy 

displacements of panel (see fig. 1) 
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X longitudinal coordinate (see fig. 1) 

xm(x) longitudinal mode shape component 

Yn(s> circumferential mode shape component 

Q! central angle of panel (see fig. 1) 

p m y n = N m t  or  Nnaa 

A phw2 eigenvalue of frequency equation, - 
C 

A 

Ei9E2,E3 

dimensionless eigenvalue, - Zaa 6 
membrane strains (see, for example, eqs. (2)) 

r2h 

coefficient in beam mode approximation Ym,n 

changes of curvature (see, for example, eqs. (2)) K1 9 K29K12 

P Poisson's ratio 

P mass  density of panel 

W angular frequency, radians per second 
n 

d d2 
ds2 d s  YA(S) = - Yn(s); Yi(S) = - y (s) 

Subscripts: 

E .  extensional 

j ,m longitudinal modal integers 

I inextensional 

k,n circumferential modal integers 
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PA 

X 

S 

general modal integers 

denotes differentiation with respect to x 

denotes differentiation with respect to  s 

Dots over quantities denote differentiation with respect to time. 

METHOD OF ANALYSIS 

The method of analysis used in this paper is the classical energy method 
employing the Rayleigh-Ritz procedure in which the longitudinal, circumferential, and 
radial (or normal) displacements u, v, and w indicated in  figure 1 a r e  each repre- 
sented in t e rms  of an arbitrary number of products of longitudinal and circumferential 
mode shapes. Two general frequency equations a re  derived, one in  which the strain 
energy is written in  te rms  of the complete strain-displacement relations given by 
Sanders in reference 11, and the other in  which the simplifying relations of Donne11 
(ref. 12) are employed. These equations a r e  given in t e rms  of general longitudinal and 
circumferential mode-shape components. In the application of the method of analysis, 
functions for these components a re  chosen to satisfy desired edge conditions, and in the 
present paper the choice of beam vibration functions leads to a simplified frequency 
equation for curved panels with various combinations of edge conditions. Particular 
forms of this equation a re  also included for curved panels with all edges fully clamped 
and with all edges simply supported. 

Derivation of General Frequency Equations 

The essential steps in the derivation a r e  the same for both general frequency equa- 
tions and a r e  presented for the equation based on the complete strain-displacement rela- 
tions of reference 11 with in-plane inertias retained. 

Strain energy and strain-displacement .. ~. ~ . -  relations.- The strain energy for a thin 
isotropic cylindrically curved panel of thickness h may be written as 
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where Z is the length along the straight edges, aa  the length along the curved edges 

as shown in figure 1, C is the extensional (or membrane) stiffness - and D is Eh 
a’ 

1 - ph 
E being Young’s modulus and Eh3 the inextensional (or bending) stiffness 

p Poisson’s ratio. 
12(1 - p2)’ 

The quantities E 1, €2 ,  . . . ~ 1 2  in  equation (1) a r e  strains and changes of curva- 
ture which may be written in te rms  of Sanders’ displacement functions in  reference 11: 

E l = U X  

W ‘2  = vs +- a 

1 

where 

‘1 longitudinal membrane strain 

€ 2  circumferential membrane strain 

middle surface shear strain ‘ 12 

K 1  longitudinal change of curvature 

circumferential change of curvature K2 

torsional change of curvature K12 

Subscripts on the displacements denote differentiation with respect to x and/or s. 

The strain-displacement relations due to  Donne11 (ref. 12) a re  the same as equa- 
tions (2) except for  the neglect of circumferential and longitudinal contributions to the 
changes of curvature; thus K~ and K~~ are reduced to  
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ss 1 K2 % -W 

(3) 

J K12 =-wxs 

Kinetic energy.- The total kinetic energy may be written as 

(Ya 1 
T = @ (ti2 + C2 + w2)dx d s  (4) 

2 0  0 

where p is the mass density of the panel and where dots over the displacements denote 
differentiation with respect to time. 

Modal functions.- The displacements u, v, and w are assumed to be of the form 

I m n  

J m n  

where amn(t), bmn(t), and cmn(t) a r e  time-dependent amplitude functions and 
m and n are integers identifying the longitudinal and circumferential mode shape 
components Xm and Yn, which a re  chosen to satisfy desired edge conditions. Pr imes 

on % and Yn denote dx Xm and - Yn, respectively. d d 
ds  

General equations of motion and frequency equation.- With the use of equations (2) 
in equation (l), the strain energy becomes a function of u, v, and w and their spatial 
derivatives. Next, both s t ra in  and kinetic energies are obtained in te rms  of the modal 
functions in  equations (5). With the assumption of simple harmonic motion of f re-  
quency w . 
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- 
the total energy of the system is minimized with respect to the amplitudes Em,, bmn, 
and cmn in accordance with the Rayleigh-Ritz procedure to obtain the equations of 
motion. 
kth circumferential modal combination may be written as 

- 
The basic relations involved in  this minimization for the jth longitudinal and 

-&- k ( X , S )  - w%(x,s)] = 0 
aajk 

a [Iv(x,s) - w 2 T(x,s)] = 0 1 
abjk 

(7) 

where U(x,s) and T(x,s) a re  the maximum strain and kinetic energies written in 
t e rms  of equations (2), (5), and (6). 
tions (7) for an arbitrary number of modal products approximating each of the displace- 
ments u, v, and w, a general set of equations of motion is obtained and may be put in 
matrix form as follows: 

By carrying out the operations indicated in  equa- 

I I 

= o  

where each submatrix represents a dual row and column identification due to the double 
summations in the derivations of the equations. For example, [A] is equivalent 

m- 
and {%} to {ts y }  'r" . Primes on matrices denote transposed matrices. 

The condition that equation (8) have nontrivial solutions is that the determinant of 
the amplitude matrices (:}, {b), and { E }  vanish. This condition gives the general 
frequency equation 

I [E]' [F] -A[H] : 
I I 

= o  (9) 
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where A is a dimensional eigenvalue o r  frequency parameter given by 

and where 

aa 2 ’ p (1 + &) Soaa s,” Xj’XhYkYA dx ds Apq = Jo Jo Xj’’xI$YkYn dx ds + - 

Bpq = Joaa s,” XiXkYkYn dx ds 

a a  
E p q = p J o  s,” X!’X J m Y k Y” n dx ds  + 9 (1 - z) Joaa s,” XiXkYkYh dx ds  

Jpq = $ {Joaa s,” XjXmYiYn dx ds - - E loaa s,” XjXI$Y:Yn dx ds 

+ Joaa s,” XjXmYiYl dx ds + 3(1 Joaa s,” Xi XkYkYh dx 

1 a a  2 
+ 2(1 - p )  lo lo XiXkYkYh dx ds 
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The matrices [q , [B], [d , [d, [d , and are all symmetric with respect 
to their individual diagonals, and the other matrices are symmetric with respect to 
the main diagonal through the relations EhP = EM, Gip = GM, and Jkp = Jpq. The 
subscripts p and q identify a particular location in the overall matrix of equation (9) 
and are associated with j,m and k,n, respectively. 

Once the eigenvalues a re  obtained from equation (9), the corresponding eigen- 
vectors are determined from equation (8) in the form of amplitude ratios, and the mode 
shapes of the curved panel are in  turn obtained from equations (5) which, for this purpose, 
may be written in  the form 

- 
Emn where i, v, and fi are nondimensional displacements and s, _bmn, and 7 

'jk 'jk cjk 

a r e  the corresponding amplitude ratios arbitrarily referred to  the j ,Mh amplitude coeffi- 
cient in the w-approximation. 

General shallow-shell frequency equation.- With the use of the Donne11 strain- 
displacement relations (eqs. (3) and the first four strain-displacement relations in 
eqs. (2)), an approximate frequency equation may be derived in  the same manner as 
equation (9). If, in addition, the in-plane velocity t e rms  G and a r e  omitted from 
the kinetic energy (eq. (4)), the following frequency equation is obtained: 

PI L-El 

= o  
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where 

dx ds  + - 2 IJ. s,"aJoz 5% Y'Y' k n d x d s  

@a 2 
J p q = a J o  Jo X X  j m Y"Y k n dx ds 

and A are the same as in equation (9). The mode shapes can 5, Mm, and where 
be determined from equations (10) as before. 

Equation (11) may be considered to be satisfactory for  calculating the frequencies 
1 of curved panels as long as the panel curvature - is not too large. A measure of the a 

actual limit of curvature is provided by a shallow-shell criterion given in reference 5 
(p. 343), for example, in  which a shell element is considered to be shallow, o r  a plate 
slightly curved, if  the r i se  (see fig. 1) is not more than one-fifth the smallest side of the 
plate lying in the plane of its supports. 
value of one-eighth for this ratio but indicate that it could be higher. 

Berry and Reissner in  reference 13 suggest a 

Reduction to  a flat panel.- For the limiting case of a flat panel, the curvature 
reduces to zero so that the G- and J-matrices vanish, and thereby leave the membrane 
and bending contributions to the frequency completely uncoupled from one another. The 
general frequency equation in bending of a flat panel, obtained from equations (9) o r  (11) 

1 when - = 0, may be written as 
a 
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where 

aa  Z 
+ 2(1 - p ) J o  Jo XiX&YLYi dx d s  

and the elements of the M-matrix are unchanged from those in equation (9). 
tion (12) is essentially the same equation as that given by Young in reference 9. 

Equa- 

Certain inextensional considerations.- The frequency equation for inextensional (or 
bending) vibrations of a cylindrically curved panel may also be obtained by omitting the 
circumferential strain E 2 in the derivation of equations (9) and (11). By simply 
setting € 2  equal to zero, the extensional (or membrane) t e rms  are  eliminated from the 
elements of the G- and J-matrices,  which reduce to zero in the case of equation (11); 
thus, extensional and inextensional contributions to the frequency uncouple and lead to 
equation (12) as before. When the longitudinal strain € 1  is set  equal to zero, exten- 
sional te rms  a re  eliminated only from the elements of the G-matrices, and an inexten- 
sional frequency equation cannot, in general, be obtained unless e 2  is also zero or 
unless the straight edges a re  unrestrained against circumferential displacement v. 
Further consideration of these effects is given later in the comparisons of theory and 
experiment for particular edge conditions. 

Applications of Method of Analysis 

Although the choice of functions for the X- and Y-components in equations (5) is, of 
course, arbitrary, the functions of a vibrating uniform beam a re  particularly attractive 
choices because they lead, by virtue of orthogonality properties, to significant simplifi- 
cations in the frequency equation. 
vibration analysis of flat panels (for example, refs. 9 and 10) and are assumed in the 
present analysis to be satisfactory for curved panels as long as the panel curvature is 
small. Because of this limitation on panel curvature, it is both sufficient and consistent 
to confine the application of beam vibration functions to the shallow-shell frequency equa- 
tion (eq. (11)) for which upper limits to  the panel curvature have already been suggested. 
Thus, the applications to  follow are demonstrated with the beam functions used in equa- 
tion (ll), although these functions could be used in  equation (9) as well, as is discussed 
later. 

These functions have been employed previously in the 
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Simplifications . due . to  . .  the _ _  use -. of - - beam functions.- . With the X- and Y-components 
approximated by means of beam vibration functions, the following orthogonality prop- 
erties hold for  any two opposite edges ideally clamped, simply supported, o r  free: 

2 loaa s," (&Yhrdx d s  (j = m; k = n) ' 
cra 

(j # m and/or k # n) 
AN = 

Em = Em, = P loaa s," X;XmYiYn dx d s  

lo s," XiXAYbYA dx d s  

I loZ X j G  dx = lo Xi'xm dx = 0 

locra YkYn d s  = loaa Y i Y i  ds = 0 

A s  a consequence of these relations, the elements of equ 
follows:' 

tion (11) may be simplified 1 



Em = loffa s,” xyxmYkY: dx d s  + 9 s,”“ lo1 XiX&YkYi dx ds (j # m; k # n) 

Gpq = Gmn = f Jeff a Jo X&XmY,2dx ds  
1 

( j = m ;  k = n )  

(j #”; k = n )  2 cia 1 
Gm = Gjm = 14 a lo lo +”n d x d s  

Gm=O (k # n) 

Fm = Fmn = ~ o f f a ~ ~ ( X , Y , ~ d x d s + ~ ~ o f f a ~ ~ ( X ~ Y ~ ~ d x d s  

Fm = Am (j # m and/or k # n) 

Jm = Jmn = - loffa Io1 Xm2YiYn dx ds  

(j = m ;  k = n )  

( j = m ;  k = n )  

Jm = Jh = 2 1 ff a loz Xm2YiYn dx ds  (j = m; k # n) 
a 0  

J m = O  (j # m) 

ffa 1 
% = Qn = 5 lo lo (X,Yn)2dx ds  + C F:a loz (X;Y,)’dx d s  

+ 2~ loffa loz (XmX&YnY~)dx ds  + s,” a loz ( XmY{)2dx d s  

+ 2(1 - p) l”“ 1‘ (XkYk)2dx ds  (j = m; k = n) 
0 0  1 

1 
% = $ s,” (xjX&YgY, + $‘XmYkY,)dx ds  

(j # m and/or k # n) 
ffa 1 

+ 2(1 - p) Jo lo XjXhYiYA dx ds  

Mm = M,, = ( j = m ;  k = n )  

Mm=O (j # m and/or k # n) 
2 

The integrals in equations (14) may be evaluated by use of reference 14. 



Modal coupling properties for certain beam-mode combinations. - For certain 
modal combinations and edge conditions, the off-diagonal matrix elements vanish, and the 
frequency equation may be simplified still further. For example, with opposite edges 
simply supported and 

Yn = sin- 
aa  n=s I 

the off-diagonal integrals a re  zero for all modal combinations of j f m or  k f n. This 
statement is also true when the opposite edges are fully clamped or free (at least for  the 
elastic free-free modes) and when j + m or k + n is odd, on the basis of the single- 
integral evaluations given in forms 16 and 20 of reference 14. 
curved edges clamped, the single integrals 

For example, with the 

are clearly zero when j + m is odd, corresponding to a consecutive sequence of odd- 
and even-numbered beam modes. When j + m is even, corresponding to all odd- or all 
even-numbered modes, the right-hand side of equation (16) reduces to 

A similar relation, of course, holds for the circumferential integrals r,"" YkYk d s  
- U  

and Joaa YkYi ds. The matrix elements in equations (14) with j + m and k + n even 

are given in  the appendix (eqs. (Al)) for the panel with all edges clamped. 

Thus, for a curved panel with opposite edges simply supported, no modal coupling 
occurs, and only the elements with subscripts mn a re  retained in equations (14). For 
opposite edges fully clamped or  free,  modal coupling occurs for a sequence of either 
odd- or even-numbered modes. In these latter cases, it is reasonable to expect the 
spread between successive odd or even eigenvalues and the differences between corre-  

and Xj+2) to be large enough f o r  the coupling effect of several  of these modes on the 
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lowest panel modes to  be small. The work of Young and Warburton on flat-panel vibra- 
tions (refs. 9 and 10) indicates a negligible effect on frequency due to  increasing the 
number of mode-shape products for plates with not only clamped edges but with other 
edge conditions as well. A negligible effect w a s  also found in  the present study for the 
curved panels of references 7 and 8 (the panels being assumed to be fully clamped at all 
edges) due to the coupling of beam modes, j and m being 1, 3, or 5. (The compari- 
son is made in  table I between the frequencies calculated by equations (A2) and those 
calculated by the uncoupled frequency equations (eqs. (17) and (20)) given in  the following 
sections and based on single-term beam-mode approximations to each displacement 
series. Equations (A2) are based on equation (9), and the calculations with j and m 
being 1,  3, or 5 were  actually made with minor modifications in  the torsional stiffness 
terms. It is assumed that a similar comparison based on equations (Al) would show the 
same effect.) 

General uncoupled shallow-shell frequency equation. - When the off-diagonal matrix 
elements vanish because of the particular edge conditions and modal combinations just 
specified and when only one beam-mode function is used to approximate the longitudinal 
component of each displacement ser ies ,  equations (14) may, by successive interchanges 
of matrix rows and columns in  equation (ll), be shown to reduce to the following simple 
equation: 

A = A  I + A E  (1 7) 

where 

and 

The subscripts I and E denote inextensional and extensional, respectively, and 
equation (17a) is a general form of the equation for  flat-panel vibrations. The 
quantities 11, . . . I6 represent the double integrals in the matrix elements 
Amn, Emn, . . . Gn and are listed in  table II. 
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Curved panel clamped . .  ... at all . edges. - The beam vibration functions approximating 
the X- and Y-components of a curved panel clamped at all edges a re  given by 

which satisfy the conditions of zero displacements and zero slopes (that is, wx = ws = 0) 
at all edges. (It is noted that eqs. (18) also give vx = u = 0 at the edges and thereby 
imply that the in-plane stress resultant 
other clamped-edge conditions. This inconsistency is believed to have a small effect 
on the w-mode frequencies and can be removed by other choices of modal functions.) 
Values of Nj,m and Nk are obtained from the equations 

Y 
Nxy is 0 at the edges in contradiction with the 

Y =  sinh p - sin p 

( P  = Nj,mz Or Nk,n"a) 1 
i 

and are  tabulated in various places in  the literature. In the present study, they were 
taken from reference 15. 

With the X- and Y-components given by equations (18) and (19), the integrals in 
equations (14) and (17) may be evaluated by use of reference 14, and the frequencies of a 
curved panel clamped at all edges may be obtained. When j + m and k + n a re  odd 
and only one te rm is retained in each ser ies ,  equations (17a) and (17b) become 

I - -  \ 

N N  n+N:) 
+ 2- AI = bm4 "a2 

and 
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- - 
where Nm = ymNm( ymNml - 2 )  and Nn = ynNn( ynaa - 2). Values for the double 
integrals 11, . . . I6 a re  listed in  table II for the all-clamped edge condition. 

Curved panel with all edges simply supported.- The X- and Y-components of a 
curved panel simply supported at all edges a re  given by equations (15) which satisfy the 
following edge conditions: 

u = o  (s = 0; s = aa) 

Ny = 0 (s = 0; s = aa) 

v = o  (x=O; x = Z )  

Nx = 0 (x=O; x = I )  

w = o  (All edges) 

wxx = 0 

wss = 0 

(x = 0; x = 1 )  

(s = 0; s = aa) 

where Nx is the longitudinal membrane s t r e s s  resultant and Ny the circumferential 
membrane s t ress  resultant. 
to move longitudinally (u-direction), and between the curved edges (x = 0, x = 1 )  the 
panel is free to move circumferentially (v-direction). 

Between the straight edges (s = 0, s = aa) the panel is free 

With the X- and Y-components given by equations (15), the integrals in equa- 
tions (17) are  evaluated (see table II), and the frequency equation reduces to 

?I2 + 

which is essentially of the same form as that given by Oniashvili in  reference 4 (p. 22) 
and also by Berry and Reissner in reference 13 for elements of thin shallow shells. 

An evaluation of shallow-shell assumptions. - A s  noted ear l ier ,  beam vibration 
functions could also be used in  the complete frequency equation (eq. (9)), although it is 
more consistent, for panels of small curvature, to  confine their use to equation (11). 
The use of beam functions in  equation (9) amounts to  an evaluation of the basic shallow- 
shell assumptions in equation (ll), namely, the neglect of in-plane inertias and the 
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neglect of circumferential and longitudinal contributions to the changes of curvature ~2 
and K~~ (as indicated in  eqs. (3)). Retention of in-plane inertias leads to two more sets 
of frequencies for each modal combination than a r e  obtained from equation (11). These 
additional frequencies are associated with in-plane shell vibrations and are  very much 
higher than the remaining set of frequencies which are associated with normal or radial 
vibrations. Moreover, the effect of these in-plane modes on the radial modes is negli- 
gible, as may be shown by the fact that frequencies calculated by equations (17), (20), 
and (21) are essentially the same as those calculated by equation (A3). Equation (A3) is 
a general uncoupled frequency equation that can be reduced from equation (9) in  the same 
way that equation (17) was obtained from equation (11). 

COMPARISON BETWEEN THEORY AND EXPERIMENT 

The experimental frequencies given in references 6 to  8 are compared in tables 111 
and IV and in figures 2 to 5 with those calculated by equations (17), (20), and (21). (The 
data actually presented in  ref. 6 a r e  supplemented by unpublished data from Flight 
Dynamic Laboratory, U.S. Air Force, that were obtained as part of the same investiga- 
tion.) Pertinent features of the experiments a re  described f i rs t ,  and are followed by 
comparisons between theoretical and experimental frequencies, both for the limiting case 
of flat panels and for curved panels, the effects of nonzero curvature and edge support 
conditions being considered together. Consideration is next given to the effects of panel 
thi ckne ss . 

Vibration Experiments of Curved Panels 

The panels of references 6 to 8 were made of aluminum alloy and, in most of the 
tests, were secured to support frames, as indicated in  figure 1, by simple lap attach- 

ments with closely spaced bolts for example, - inch in diameter and spaced 1- inches 
on centers in ref. 7; - inch in  diameter and spaced 1- inches on centers in ref. 8 . In 

some of the tes ts  in reference 6, the edge supports were reinforced by use of an addi- 
tional attachment frame fastened, as shown schematically in  figure 1, to achieve greater 
clamping action symmetrically applied with respect to the middle surface of the panel, in 
contrast to the unsymmetrical clamping action of the lap attachment. All the curved 
panels in references 6 to 8 were formed to their supports and were not rolled. The 
panels of reference 6 were 0.028 inch (0.071 cm) and 0.048 inch (0.12 cm) thick and had 
unsupported dimensions of 11 inches (27.94 cm) by 9 inches (22.86 cm). These panels 
were very nearly the same size as those of reference 7, which were 5/8 inch (1.59 cm) 
longer on each edge and had a thickness of 0.032 inch (0.081 cm). The panels of 

1 1 
8 

l6 ) 1 
2 

3 ( 
16 
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reference 8 were 0.020 inch (0.051 cm), 0.032 inch (0.081 cm), and 0.040 inch (0.10 cm) 
thick and were square with an unsupported dimension of about 17.5 inches* (44.45 cm) 
on a side. 

Flat Panels 

Experimental and theoretical frequencies, calculated by means of equation (20a), 
are shown in the left-hand plots of figures 2 and 4 to  be in very good agreement for the 
flat rectangular panels of references 6 and 7, on the basis of fully clamped edges. This 
good agreement (which is also shown in ref. 7 on the basis of Warburton's equations of 
ref. 10) suggests that the closely spaced bolts securing this panel to  its support frame 
provided sufficient edge fixity for adequate representation of fully clamped edges. Good 
agreement is also shown in figure 5 for the flat square panels of reference 8, also under 
conditions of ideally clamped edges approximated by means of closely spaced bolts. 

Curved Panels 

The effects of curvature on panel frequencies a re  shown in the middle and right- 
hand plots of figures 2, 4, and 5 for both clamped and simply supported edges. 
ture  increased (or radius decreased), both calculated and measured frequencies of the 
lower modes experienced greater increases than did the higher mode frequencies, and, 
as may be seen in figure 2(a), minimum frequencies tended to  occur at circumferential 
mode numbers greater than n = 1. 
membrane contribution to the frequency (that is, the AE 
and (20b) and the second te rm in eq. (21)). For example, in equation (21) for the simply 
supported curved panel, the second te rm predominates at low values of n but clearly 
diminishes as n increases. The first te rm,  which is the bending frequency contribu- 
tion, predominates as n increases. These trends a re  essentially the same as the well- 
known ones for the complete cylindrical shell as discussed by Arnold and Warburton in 
reference 16. 

As curva- 

This behavior is attributed to  the influence of the 
component in  eqs. (17b) 

Another somewhat broader view of the effects of curvature and edge fixity is 
afforded by figure 3 for all combinations of mode numbers up to  and including m and n 

.~ 

The length actually used in  the present frequency calculation w a s  17.0 inches 
(43.18 cm) which is the free length between the edges of the support frame, whereas 
17.5 inches (44.45 cm) is a so-called "effective" length (ref. 7) that includes a little less  
than half the distance between the inside free edge of the support frame and the center- 
line of the row of mounting bolts. Calculated frequencies based on 17.5 inches (44.45 cm) 
were no more than 6 percent lower than those based on 17.0 inches (43.18 cm) for the 
larger values of n (n = 7) for either simply supported or clamped-edge panels. 

* 
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of 5 for the rectangular panels of reference 6. Here, in t e rms  of a dimensionless fre- 
quency parameter shown as a function of the ratio of axial to  circumferential wave 
lengths, the gridwork pattern of figure 3 (a) becomes more distorted with increasing 
curvature. Also, the diminishing effects of edge fixity are evident in  the progressively 
steeper trends in  both solid and dashed gridworks in the left-hand portions of the plots 
as m increases. 

Effects of edge fixity.- Most of the experimental frequencies of the curved panels 
of references 6 to 8 fell somewhere between the calculated frequencies based on all edges 
fully clamped and all edges simply supported. The extent of the actual edge clamping 
action, of course, determines how close the experimental frequency trends were to  either 
upper or lower calculated frequency bounds. At low values of n, as the panel curvature 
increased, the experimental frequencies were generally closer to the lower bounds, for 
which all edges were assumed to be simply supported. (See figs. 4(a) and 5.) As n, 
and also m, increased, the experimental frequencies showed some tendency to move 
closer to the upper bounds (all edges assumed clamped). This tendency w a s  more evi- 
dent for the rectangular panels of reference 7 and the square panels of reference 8 than 
it was for the rectangular panels of reference 6. 
trends suggest that the lap attachments and closely spaced mounting bolts may not have 
been sufficient to res t ra in fully the in-plane displacements of the panel at its edges for 
low n, but evidently became more satisfactory in  this respect as n increased and the 
predominant bending energy required less  clamping action. 

These experimental and calculated 

Reinforcement of the panel edges by means of the additional clamping frame in ref- 
erence 6 resulted in increases in  the experimental frequencies by as much as 1 2  percent 
(for m, n = 1, 5 with a = 96 inches (243.84 cm) and h = 0.048 inch (0.12 cm) in 
figs. 2 and 3 and table III(b)). The agreement between these frequencies and those of the 
upper calculated frequency bounds is seen to be greatly improved for all modes except 
m, n = 1, 1 and 1, 2, for which even this additional clamping action may not have been 
sufficient to restrain the in-plane edge displacements in  these low modes. 

In view of the dominant effect of the circumferential strain e 2  noted ear l ier  in 
the general derivation of the equations, it is reasonable to expect a greater increase in  
experimental frequencies with heavier reinforcement along the straight edges than along 
the curved edges. A possible indication of such a result may be seen in the relatively 
small reduction in  upper clamped-edge frequencies due to setting the longitudinal strain 
E = 0, in contrast to the complete elimination of the membrane frequency contribution 
when e 2  = 0, as shown in figures 4(a) and 4(b). For the lower frequency boundary, with 
all edges assumed simply supported (which involves unrestrained circumferential edge 
displacements as previously noted), membrane effects were eliminated by putting 
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either e or e equal to zero. As shown in figure 4, all other frequencies fell above 
this lower boundary. 

Remarks on unbounded experimental frequencies. - Although most of the experi- 
~~ 

mental frequencies fell within upper and lower calculated frequency boundaries, enough 
values lay outside this range to merit  some discussion. Although no fully satisfactory 
explanation of these modes appears to be possible, some observations are offered here, 
based, in  part, on examination of the experimental nodal patterns presented in  
reference 6. 

As many as 10 of the experimental frequencies of the 0.028-inch (0.071 cm) panels 
of reference 6 a r e  seen in  figure 2 and table I11 to  be higher than the corresponding cal- 
culated frequencies with all edges assumed fully clamped. 
patterns of these modes with those for  the 0.048-inch (0.12 cm) panels reveals signifi- 
cant enough differences in  mode shape to indicate the possible presence o r  influence of 
other modes, particularly for those modes with experimental frequencies about 11 per- 
cent and 20 percent higher than calculated upper bound frequencies (that is, m,  n = 3, 1 
for a = 72 inches (182.9 cm) and 96 inches (243.84 cm), respectively). (The data in 
ref. 6 a re  given for nominal values of 0.051 inch and 0.032 inch. The actual measured 
thicknesses in  the supplementary unpublished data included in  the present paper are 
0.048 inch and 0.028 inch.) 

Comparison of the nodal 

On the lower side of the calculated frequency range, five of the experimental fre- 
quencies of references 7 and 8 were lower than the calculated lower bound frequencies 
with all edges assumed simply supported. The largest discrepancies may be seen in fig- 
ure 4(b) for m, n = 3, 1 and a = 96 inches (243.84 cm) and in figure 5 for m, n = 1, 2 
and a = 48 inches (121.92 cm), in which experimental frequencies were anywhere from 
8 percent (fig. 4(b)) to about 40 percent (fig. 5) lower than the corresponding calculated 
lower bound frequencies. 
satisfy fully the requirements of simply supported edges with membrane effects included, 
and the lower bounds became the calculated trends in  inextensional frequencies. 

In these cases, the actual edge conditions evidently did not 

Effects of panel thickness.- The effects of panel thickness a re  shown in figures 2 
and 3 for the rectangular panels of reference 6 and in  figure 5 for the square panels of 
reference 8. Increasing thickness clearly resulted in greater increases in  the frequen- 
cies of modes for higher values of n than for  lower values of n as shown in figures 2 
and 5. As both m and n increased and inextensional effects became predominant, the 
calculated frequencies became more nearly proportional to  thickness, as is indicated by 
the nearly equal values of dimensionless frequencies in the upper parts of figure 3 for 
both thicknesses. This relation holds over a somewhat larger range of m and n for  
calculated frequencies with simply supported edges than for  those with clamped edges. 
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CONCLUDING REMARKS 

The energy method employing the Rayleigh-Ritz procedure is applied to the vibra- 
tion of cylindrically 'curved rectangular and square panels for which experimental vibra- 
tion data a r e  known. General frequency equations are derived and applied to panels of 
small  curvature with the mode shapes approximated by products of beam vibration func- 
tions satisfying certain geometrical edge conditions in  both longitudinal and circumfer- 
ential directions. This application leads to simplified Rayleigh-type frequency equations 
that reduce to  those obtained previously by other investigators for flat panels and for 
curved panels with all edges simply supported. In the present study, these equations 
proved to be more satisfactory for certain modal combinations and edge conditions than 
for others. 

Most of the measured frequencies were bracketed by calculated frequencies with all 
edges assumed clamped for the upper bound and all edges assumed simply supported for 
the lower bound. Comparable frequencies were measured on panels of the same material 
and essentially the same size in two investigations conducted independently. At low- 
order circumferential modes, the measured frequencies were generally closer to the 
lower calculated frequency bound, and as the order of the circumferential mode increased, 
measured frequencies showed some tendency to  move closer to the upper calculated fre-  
quency bound. This behavior is attributed partly to membrane effects (due to panel 
curvature) and partly to complicated edge conditions (due to  the use of bolted simple lap 
attachments) that could not be adequately represented by theory. Comparison of experi- 
mental frequencies with inextensional frequencies, calculated with longitudinal and/or 
circumferential membrane strains omitted, indicated that the actual panel mountings may 
have provided greater edge fixity along curved rather than along straight edges. 

Increasing panel thickness resulted in greater increases in the frequencies of 
modes for higher circumferential mode numbers than for lower mode numbers. 

Further efforts to bring theoretical and experimental frequencies into closer agree- 
ment should include an examination of the effects of modal functions other than beam 
functions, calculations by other methods of analysis (such as methods of finite differences 
and/or finite elements), and vibration tests of curved panels with edges designed to sat- 
isfy ideal simply supported or clamped conditions as closely as possible. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., July 22, 1966, 
124-08-05-02-23. 
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APPENDIX 

SUPPLEMENTARY FREQUENCY EQUATIONS BASED ON THE 

RAYLEIGH-FUTZ VIBRATION ANALYSIS 

FOR CURVED PANELS 

This appendix contains the matrix elernents of additional frequency equations 
evolving from the general vibration analysis presented in  the main text and with elemen- 
tary beam vibration functions approximating longitudinal and circumferential components 
of the panel mode shapes. The first two of these equations apply to the vibration of 
curved panels with all edges fully clamped for a sequence of either odd- or even- 
numbered modes. Another frequency equation included is a general uncoupled equation 
based on the complete Rayleigh-Ritz vibration analysis represented by equation (9) and 
obtained under the same conditions specified in reducing equations (14) to  equation (17). 

Rayleigh-Ritz Frequency Equations for the Vibration of 

Curved Panels With All Edges Fully Clamped 

On the basis of forms 16 and 20 of reference 14, as illustrated by equation (16), the 
shallow-shell matrix elements in  equations (14) may be written as follows for a curved 
panel clamped at all edges, with j + m and k + n even: 

(j = m; k = n) 1 - I 
2 - 

('jNj - 'mNm)('kNk (j f m; k + n )  
(Nm4 - Nj4)(N,4 - N:) 

Aw = Fpq =a 
2 

- -  
E~ = E~~ = N ~ N ~ ( + )  

G~ = G,, = -f Nmaa 

(j = m; k = n) 

(j + m ;  k + n )  

(j = m; k = n) 

(Equation continued on next page) 
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APPENDIX 

G m = O  

-. 

- Nn' Jm - Jmn = -- 
a 

2 2  2 8N k N n ( y N  k k -ynNn) 
JPq = Jkn = -- a 

Nn 4 - Nk4 

J w = O  

Mpq = Mmn = 2 cra 

M = O  
Pg 

(j f m ;  k = :  

(k f 1 

( j = m ;  k = r  

( j = m ;  k = n  

( j = m ;  k # n  

(j f m 

(j = m; k = n: 

( j f m ;  k#nn) 

( j = m ;  k = n )  

(j # m and/or k # n) 

If elementary beam vibration functions a r e  used in  equation (9), a set  of matrix 
elements similar to, and more complete than, those of equations (14) is obtained. These 
elements are given in  the following equation, first in general form and then for a curved 
panel clamped at all edges with j + m and k + n even: 
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O = m ;  k=n) 

0 # m and/or k f n) 

( l = m ;  k = n )  

( j # m ;  k = n )  

F # n) 

O = m ;  k = n )  

O # m ;  k t n )  

( j = m ;  k = n )  

( j # m ;  k = n )  

( k t  n: 

( j = m ;  k = n  

0 # m and/or k # n 

( l = m ;  k = n  

( j = m ;  k i n  

O # m  



APPENDIX 

For a curved edge with all edges clamped and j + m and k + n even, these elements 
become 

- 
Bmn = Nmaa 

Hkn = 8(NkNny(ykNk - ynNn) 

N: - N," 

M,, = Zaa 

M = o  W 

( j = m ;  k = r  

( j t m ;  k # r  

( j = m ;  k = r  

( j # m ;  k = n  

( j = m ;  k = n  

( j # m ;  k # n  

( j = m ;  k = n  

( j f m ;  k = n  

( j # m ;  k # n  

( j = m ;  k = n  

( j # m ;  k # n  

( j = m ;  k = n  

( j = m ;  k # n  

( j = m ;  k = n :  

( j = m ;  k # n :  

( j # m ;  k = n )  

( j = m ;  k = n )  

( j # m ;  k t n )  

( j = m ;  k = n )  

( j # m ;  k t n )  
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APPENDIX 

As is noted in  the main body of the paper, the frequencies calculated by using equa- 
tions (A2) for j ,  m = l, 3, 5 were made with minor modifications in  the torsional stiff- 
ness terms. Specifically, the t e rms  involving - were omitted from the A-, E-, and 

G-matrices, 9/4 was replaced by 4 in the F-matrix, - - I.1 by 2 - 1.1 in the J-elements 

(eqs. (A2b)). These changes correspond to replacing K~~ in equations (2) by 

K~~ = -wxs + 2, which is the torsional change of curvature given by Love in refer- 
ence 17 (with w oriented outward as in fig. 1 instead of inward as in ref. 17). Fre- 
quency calculations not included in this paper indicated that the effect of these minor 
modifications was negligible. 

D 
C 

2 

General Uncoupled Frequency Equation 

When the off-diagonal matrix elements in equations (A2a) vanish for  opposite edges 
fully clamped or free  (for the elastic modes) and for j + m or k + n odd, with only one 
beam-mode function retained in each displacement series,  an uncoupled frequency equa- 
tion may be obtained, just as the uncoupled shallow-shell frequency equation (eq. (17)) 
w a s  obtained from equations (14) in the main text. This simplified equation may be 
written in the following determinantal form 

*mn - ABmn Emn 'mn 

Emn Fmn - Jmn 

Gmn Jmn %n - AMmn 

= o  

where each of the determinant elements is given in equations (A2a) for j = m and k = n 
and may also be expressed as 

= I2 + y(l + +)I1 
4a C 

= PI6 + yl - +)Il 
4a C Emn 

29 



APPENDIX 

F m n = (  1+-I :)3 2 ( 1 +  +)11 
a C  4a C 

+ I3 + 2p16 + 2(1 - p)I 
a 2 c  

where Bmn, Hmn, Mmn, and I1 to I6 are listed in table II. 
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TABLE I.- EFFECT OF HIGHER ORDER LONGITUDINAL MODES ON CALCULATED 

FREQUENCIES OF CURVED PANELS CLAMPED AT ALL EDGES 

[m = 11 
(a) Rectangular panel, 11g inches X 2 inches X 0.032 inch 

8 8 
(29.53 cm X 24.45 cm X 0.081 cm) (ref. 7) 

301.0 
253.6 
251.6 
292.6 
373.4 
486.7 
627.4 

n 

488.0 486.6 
438.1 437.0 
432.0 431.05 
471.6 470.6 
554.3 553.3 
674.4 673.2 

300.5 
252.9 
250.9 
291.8 
372.4 
485.6 
626.3 

Frequencies, cps, for - I 
a = 96 inches (243.84 cm) I a = 48 inches (121.92 cm) I 

314.4 
334.1 
479.2 
722.5 

1045 

314.0 
333.15 
477.7 
720.5 

I 602.7 I 601.9 
531.0 529.8 
595.05 593.5 1 1X'748.7 1 782.8 

(b) Square panels, 17.0 inches X 17.0 inches (43.18 cm X 43.18 cm)*** (ref. 8) 

n 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

~ 

1 
2 

Frequencies, cps, for - 
a = 96 inches (243.84 cm) I a = 48 inches (121.92 cm) 

j = m = l  j, m = 1, 3, 5 
(*I 

302.4 
260.5 
273.4 
338.8 
449.7 
597.4 
776.9 

h = 0.040 inch (0.10 cm) 

301.9 
259.8 ~ ~ .. 

272.6 
337.8 
448.5 
596.1 
775.5 

597.75 
490.25 
449.8 
463.4 
532.85 
652.3 
813.8 

*Calculated by equations (17) and (20). 
**Calculated by equations (A2b) modified as noted in the appendix. 

***Actual unsupported length between opposite edges of support frame. 
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TABLE II.- INTEGRALS FOR MODAL FUNCTIONS IN THE FREQUENCY EQUATION 

O F  A CYLINDRICALLY CURVED PANEL WITH SIMPLY SUPPORTED 

AND CLAMPED EDGES (BASED ON mF. 14) 

All  edges 
simply 

supported 

Zaa 
4 
- 

aa 2 -- (mr) 
42 

1 2 - 
4 a a  

(mn) 2r4 
4 2 a a  

aa 4 - (mn) 
42 3 

-Hmn 

I1 

.. __ . .  

All edges  clamped 

- .  

2aa 

-Y 1 N a a ( y  N a a  - 2)  n n  a a  

Y Y  
Nm2Nnaa(ymNm2 - 2)(ynNnaa - 2) 

2aa 
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n =  1 m 

Simply 
supported E%:< 

n = 2  n = 3  n = 4  n = 5  

supported mental mped supported :Et?< supported mental supported mental amped 
Simply Experi- Simply Simply Experi- Simply Experi- c1 

~~ 

94 
169 
297 
472 
687 

103.7 156.9 211 
185.3 224.3 286 
317.1 336.8 406 
495.9 494.2 I 572 
720.35 696.6 790 

862.3 
929.8 

1042 
1200 
1402 

957 1042 
1072 1114 
1157 1230 
1317 1394 

1605 

1 
2 
3 
4 
5 

56.1 
123.5 
236.0 
393.4 
595.8 

392.3 
504.7 
662.1 
864.5 

483 509.6 
601 630.0 
766 799.95 
982 1018 

1 145.7 
2 273.7 
3 372.1 

498.85 
5 674.8 

250 317.1 
299 357.95 
532 445.7 
840 589.6 
816 789.5 

862.3 
930.3 

1044 
1204 
1408 

999 1055 
1087 1127 
1222 1243 
1389 1407 

1618 

1 187.9 
2 348.2 
3 450.3 
4 567.5 

5 1 730.1 

269 

585 

850 

430.85 
591.8 
784.5 
~- 

516 
726 
905 

1 
2 
3 
4 
5 

274.8 291 608.2 184.0 289 536.5 328.1 439 602.7 560.6 881 796.2 862.5 
503.8 639.9 350.2 488 592.8 421.4 668.9 634.8 866.4 932.0 
621.8 622 702.1 525.3 652 687.85 571.9 813 779.2 762.3 979 981.6 1050 
728.8 778 807.95 894.8 843 827.4 755.8 963 936.25 936.7 1144 1216 
869.25 943 967.9 882.2 1015 968.3 1152 1140.5 1152 1355 1428 

TABLE III.- CALCULATED AND MEASURED FREQUENCIES OF FLAT AND CURVED PANELS 

(a) Rectangular panel, 11 inches x 9 inches X 0.028 inch (27.94 em X 22.88 cm X 0.071 em) (ref. 6) 

I Frequencies, cps, for - 

235.5 
311.0 
436.6 
611.5 
833.9 

6 54 
735 
845 
998 

1218 

705.75 
777.8 
895.45 

1061 
1276 

560 
627.4 
739.9 
897.3 

1100 

Radius, 96 inches (243.84 em)* 

164.1 
261.55 
392.5 
551.2 
747.3 

233 
351 
497 

337.0 
400.5 
511.1 
672.0 
882.75 

729.4 
800.9 
917.8 

1083 
1296 

325.65 405 483.65 

522.3 
686.8 

560.1 673 

Radius, 72 inches (182.9 em) rF 
1207 

~ 

747.3 
818.4 
934.7 

1099 
1311 

1066 
113'7 
1253 
1417 
1628 1 

398.4 326.3 380 517.1 
458.15 1 405.5 1 49: 585.8 
562.3 535.6 700.3 
715.6 705.3 863.2 
919.0 912.1 1074 

Radius, 48 inches (121.92 em) 

618 
705 
833 
988 

1207 - 

412.8 
448.4 
524.4 
653.25 
839.4 

560.3 
630.7 
749.9 
915.0 

1123 

988 
1100 
1244 

1445 
1597 



W aa 

n =  1 n = 2  

supported mental supported mental Clamped 

m 

Simply Experi- Simply Experi- 

TABLE ID.- CALCULATED AND MEASURED FREQUENCIES OF FLAT AND CURVED PANELS - Concluded 

n = 3  n = 4  n = 5  

Simply Experi- Simply Experi- Simply Experi- Clamped 
supported mental Clamped supported mental Clamped supported mental 

(b) Rectangular panel, 11 inches X 9 inches X 0.048 inch (27.94 cm X 22.86 cm X 0.12 cm) (ref. 6 and unpublished experimental data*) 

1 
2 
3 
4 
5 

96.1 182 177.7 
211.8 314 317.6 
404.5 524 543.6 
674.4 787 850.1 
1021 1151 1235 

748.8 
873.7 

1080 
1371 
1746 

4 ' 740.9 ~( i:i ') 907.95 

959.9 1102 1210 
1076 1228 1333 
1268 1384 1535 
1538 1643 1820 
1885 1972 2187 

5 1069 ~( :::: )1276.5 

1478 
1594 
1787 
2056.5 
2403 

557.4 685.5 
4 788.7 884 950.5 
5 1105 1197 1308 

1582 1786 
1734 1910 
1905 2109 
2134 2589 
2488 2752 

268.9 
384.55 
577.3 
847.15 

1194 

403.7 
533.1 
748.4 

1048 
1429.5 

375 
503 
693 
964 

1299 

556.8 685 
672.5 808 
865.2 989 

1135 1251 
1482 1581 

273.2 

407.4 

611.5 

881.6 

( i:: ) 470.2 

( iiy } 590.0 

( ;:: ) 794.2 

( i::: ) 1085 

557.3 ( 66:; ) 777.1 

676.9 ( 8':; ) 900.1 

875.6 ( 1::: )1104 

1150 '( :::: )1393 

Radius, 96 inches (243.84 cm)** 

993 
1119 
1313 

1235 1478 1800 
1357.5 1594 1923 
1558 1789 1783 2123 
1842 2061 2045 2403 
2208 2410 2765 

1224 ( :::: )1459 1498 ( izi: )1765 

1 
2 
3 
4 
5 

960.0 ( l::i ) 1224 

285.6 315 625.1 285.6 400 628.8 558.8 678 856.25 960.3 1040 1265 1478 1521 1817 
1185 1387 1595 1635 1940 532.3 566 690.0 469.3 597 734.1 689.85 850 975.2 1080 

1864 2139 703.3 755 829.4 704.1 838 918.0 906.1 1064 1173 1281.5 1400 1587 1791 
911.7 992 1063 977.85 , 1187 1192 1339 1455 1561.5 1869 2066 2140 2419.5 

1202 1294 1394 1311 1441 1542 1545 1677 1820 1916 2234 2418 2460 2781 

2059 I (  "! ~)2397 

2407 ( 1::: )2759 

276.4 
424.3 
636.8 
907.6 

1247.5 

343 
513 
731 
997 

1324 

Radius, 72 inches (182.9 cm) 

1510 

Radius, 48 inches (121.92 cm) 



TABLE 1V.- CALCULATED AND MEASURED FREQUENCIES 

OF CURVED PANELS 

(a) Rectangular panel, 11 5 inches X 9- 5 inches X 0.032 inch 
3 8 

(29.53 cm X 24.45 cm X 0.081 cm) (ref. 7) 

m 

.. 

1 
1 
1 
1 
1 

2 
3 
4 
5 

1 
1 
1 
1 
1 

I 

Frequencies, cps, for - I .~ 

n i Theory 
Experiment 

Clamped supported 
1 -.. 1 I 

a = 96 inches (243.84 cm) 

146.7 
163.2 
322.8 
554.8 
853.9 

274.3 
373.1 
501.6 
680.1 

3 14.4 
334.1 
479.2 
722.5 
1045 

356.6 
446.4 
593.0 
796.2 

1 
1 
1 
1 

~ 

150 
2 50 
440 
725 

a = 48 inches (121.92 cm) 

277.5 
183.2 
323.4 
551.9 
848.7 

505.1 
622.1 
729.7 
872.3 

345 
540 
800 

~ 

602.7 
531.0 
595.05 
784.7 
1078 

635.9 
699.9 
808.2 
971.4 

3 50 
2 70 
445* 
760 

560 
770 
93 5 

*Extrapolated from figure 16 of reference 7. 
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TABLE IV. - CALCULATED AND MEASURED FREQUENCIES 

OF CURVED PANELS - Concluded 

n 

(b) Square panels; 17.0 inches X 17.0 inches (43.18 cm X 43.18 cm)*; 
various thickness; m = 1 (ref. 8) 

- __ ___ - -  _ -  
Frequencies, cps, for - 

a = 96 inches (243.84 cm) a = 48 inches (121.92 cm) 
- --_ ___I - 

Theory Theory 

supported Clamped supported 

1 
2 
3 
4 
5 
6 
7 

167.3 299.5 
74.6 245.9 
74.4 225.55 
114.7 232.3 
173.3 267.1 
246.2 326.9 

407.7 332.5 
- 

137.1 
226.9 
346.0 
492.1 

I 665.0 
~ .. . 

7 

597.3 
484.1 
423.7 
393.7 
392.9 
421.1 
476.9 

- - 

' 240 

85 
129 
190 

345 

.032 inch (O.( 
- - .  . . 

__ ~~ 

117 
125 
229 
295 

. ._ 

1 168.1 
2 05.3 
3 111.5 
4 181.9 
5 276.9 
6 393.7 
7 532.0 

h = 0.040 inch 
_.___ _- . - - _._ 

123 
197 
278 
3 88 

727 

302.4 
260.5 
273.4 
338.8 
449.7 
597.4 
776.9 

-. ~ 

301.0 
253.6 
251.6 
292.6 
373.4 
486.7 
627.4 

i 

332.7 
137.4 
94.1 
119.55 
174.7 
246.6 
332.6 

_-___ - 

81 cm) 
_I___ 

333.1 
143.5 
125.4 
184.9 
277.6 
393.9 
532.0 

(0.010 cm) 

333.5 
148.9 
148.6 
229.2 
346.5 
492.2 
664.9 

~ .~~ 

~- 

598.0 
491.65 
451.0 
464.5 
534.0 
653.6 
815.2 

~ .. 

3 10 

86 
148 
24 1 
387 
439 
- .  

102 
144 
270 
294 

613 

- 

169 
180 
289 
3 98 

73 5 
- ~ 

*Actual unsupported length between opposite edges of support frame. 
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Figure I.- Analytical vibration model of cylindrically curved panel. 
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Figure 2.- Comparison of calculated and measured natural frequencies of flat and curved rectangular aluminum panels of two thicknesses (ref. 6). Additional clamp for 
h = 0.028 inch (0.07 cm), a = a, 96 inches (243.84 cm); lap attachment for a l l  others except as noted. 
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Figure 2.- Concluded. 
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(a) a = m (flat panel). h = 0.028 i n c h  (0.07 cm); experimental edge support; 
additional clamp frame. 

I I I I I I 

n 1  
m aa 

, I 2 3 4 5 6 
-- 

(b) a = m (f lat  panel). h = 0.048 (0.12 cm); experimental edge support; simple 
lap attachment. 

Figure 3.- Comparison of calculated and measured dimensionless frequency parameters for rectangular a lum inum panels (ref. 6). 
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(c) a = 96 inches (243.84 cm). h = 0.028 inch (0.07 cm); additional clamped frame. 
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-- 

(d) a = 96 inches (243.84 cm). h = 0.048 inch (0.12 cm); additional clamped 
frame (flagged symbols); simple lap attachment (plain symbols). 

Figure 3.- Continued. 
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(e) a = 72 inches (177.88 cm). h = 0.028 inch (0.07 cm); simple lap attachment. 
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(f) a = 72 inches (177.88 cm). h = 0.048 inch (0.12 cm); simple lap attachment. 

Figure 3.- Continued. 
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(g) a = 48 inches (121.92 cm). h = 0.028 i n c h  (0.07 cm); simple lap attachment. (h) a = 48 inches (121.92 cm). h = 0.048 i n c h  (0.12 cm); simple lap atta iment. 

Figure 3.- Concluded. 
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Figure 4.- Comparison of calculated and measured natural frequencies of flat and curved 0.032-inch-thick rectangular aluminum panels (ref. 7). 
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Figure 5.- Comparison of calculated and measured natural frequencies of flat and curved 17-inch-square aluminum panels (ref. 8); m = 1. 
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